15.7 Lecture 2: Spherical Coordinates

Jeremiah Southwick
(And Robert Vandermolen)

Spring 2019

Links

Robert's slides can be found here:
http://people.math.sc.edu/robertv/teaching.html
The 15.7 slides can be found here:
https://docs.google.com/presentation/d/1V_
CtHJvjz4-etPuIfNYLhp08ohjmrU6nbetc9xTzqiU

SPHERICAL CODRDINATES!

Sometimes the easiest conversion is into Spherical Coordinates, as follows

SPHERICAL COORDINATES!

Sometimes the easiest conversion is into Spherical Coordinates, as follows

SPHERICAL CODRDINATES!

Sometimes the easiest conversion is into Spherical Coordinates, as follows

SPHERICAL CODRDINATES！

Sometimes the easiest conversion is into Spherical Coordinates，as follows

Note，that ρ is again the length， so we have an easy formula relating it to x, y, z ：
$\rho^{2}=x^{2}+y^{2}+z^{2}$

SPHERICAL CODRDINATES!

Sometimes the easiest conversion is into Spherical Coordinates, as follows

$z=\rho \cos (\phi)$

Note, that ρ is again the length, so we have an easy formula relating it to x, y, z :
$\rho^{2}=x^{2}+y^{2}+z^{2}$

SPHERICAL COORDINATES!

Sometimes the easiest conversion is into Spherical Coordinates, as follows
$x=\rho \sin (\phi) \cos (\theta)$
$z=\rho \cos (\phi)$

Note, that ρ is again the length, so we have an easy formula relating it to x, y, z :
$\rho^{2}=x^{2}+y^{2}+z^{2}$

SPHERICAL COORDINATES!

Sometimes the easiest conversion is into Spherical Coordinates, as follows

$$
\begin{array}{r}
x=\rho \sin (\phi) \cos (\theta) \\
y=\rho \sin (\phi) \sin (\theta)
\end{array}
$$

$$
z=\rho \cos (\phi)
$$

Note, that ρ is again the length, so we have an easy formula relating it to x, y, z :
$\rho^{2}=x^{2}+y^{2}+z^{2}$

SPHERICAL CODRDINATES!

What's so great about Spherical Coordinates?
Before a sphere was defined as:
$x^{2}+y^{2}+z^{2}=(\text { radius })^{2}$

Now, we can define it as:

$$
\rho=\text { radius }
$$

Fixing ϕ

If we fix ϕ, we get interesting geometric shapes.
When $\phi=0$, we get the positive z-axis.
When ϕ is between 0 and $\pi / 2$, we get a cone opening from the origin in the positive z-direction.

When $\phi=\pi / 2$, we get the $x y$-plane (a flat cone!).
When ϕ is between $\pi / 2$ and π, we get a cone opening from the origin in the negative z-direction.

When $\phi=-\pi$, we have the negative z-axis.
This means we can usually don't have to go past the extreme values $\phi=0$ and $\phi=\pi$.

Fixing θ

When we fix θ, we get a vertical half-plane from the z-axis in the θ direction. This is the same as in the case of cylindrical coordinates.

SPHERICAL CODRDINATES!

Sometimes the easiest conversion is into Spherical Coordinates, and when changing a triple integral, on a region, R:

$$
\rho_{1} \leq \rho \leq \rho_{2}, \quad \theta_{1} \leq \theta \leq \theta_{2} \quad \phi_{1} \leq \phi \leq \phi_{2}
$$

$$
\iint_{R} \int f(x, y, z) d V=\int_{\theta_{1}}^{\theta_{2}} \int_{\phi_{1}}^{\phi_{2}} \int_{\rho_{1}}^{\rho_{2}} f(\rho \sin (\phi) \cos (\theta), \rho \sin (\phi) \sin (\phi), \rho \cos (\phi)) \rho^{2} \sin (\phi) d \rho d \phi d \theta
$$

Looks gross.... Sooooo great!!!

SPHERICAL COORDINATES!

$$
\iint_{R} \int f(x, y, z) d V=\int_{\theta_{1}}^{\theta_{2}} \int_{\phi_{1}}^{\phi_{2}} \int_{\rho_{1}}^{\rho_{2}} f(\rho \sin (\phi) \cos (\theta), \rho \sin (\phi) \sin (\phi), \rho \cos (\phi)) \rho^{2} \sin (\phi) d \rho d \phi d \theta
$$

$d V \rightsquigarrow \rho^{2} \sin (\phi) d \rho d \phi d \theta$

Looks gross.... Sooooo great!!!

SPHERICAL COORDINATES!

EXAMPLE:

Find the volume of the "ice cream cone" cut from the solid sphere

$$
x^{2}+y^{2}+z^{2}=9
$$

And the upper part of the cone

$$
\begin{aligned}
& z=\sqrt{x^{2}+y^{2}} \\
& \text { RECAL: Volume of } R=\iint_{R} \int d V
\end{aligned}
$$

SPHERICAL CODRDINATES!

EXAMPLE:

Find the volume of the "ice cream cone" cut from the solid sphere

$$
x^{2}+y^{2}+z^{2}=9
$$

And the upper part of the cone

$$
z=\sqrt{x^{2}+y^{2}}
$$

$V=\int_{?}^{?} \int_{?}^{?} \int_{0}^{3} \rho^{2} \sin (\phi) d \rho d \phi d \theta$

My favorite way to find the bounds in this case is to analyze the picture...

SPHERICAL CODRDINATES!

EXAMPLE:

Now, to find Φ we need to find the intersection of the cone and the sphere

$$
\begin{gathered}
x^{2}+y^{2}+z^{2}=9 \\
\& \\
z=\sqrt{x^{2}+y^{2}} \\
z^{2}+z^{2}=2 z^{2}=9 \\
z=\frac{3}{\sqrt{2}}
\end{gathered}
$$

SPHERICAL COORDINATES!

Now, to find Φ we need to find the intersection of the cone and the sphere

$$
\begin{gathered}
z=\frac{3}{\sqrt{2}} \\
z=\rho_{\cos (\phi)} \\
\frac{3}{\sqrt{2}}=3 \cos (\phi) \\
\phi=\frac{\pi}{4}
\end{gathered}
$$

SPHERICAL COORDINATES!

EXAMPLE:

Find the volume of the "ice cream cone" cut from the solid sphere

$$
x^{2}+y^{2}+z^{2}=9
$$

And the upper part of the cone

$$
\begin{gathered}
z=\sqrt{x^{2}+y^{2}} \\
V=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{3} \rho^{2} \sin (\phi) d \rho d \phi d \theta
\end{gathered}
$$

My favorite way to find the bounds in this case is to analyze the picture...

SPHERICAL CODRDINATES!

EXAMPLE:

$$
V=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{3} \rho^{2} \sin (\phi) d \rho d \phi d \theta
$$

Now you Try!

Sketch the regions with following volumes, and solve for the volume:

$$
\begin{aligned}
& -\int_{0}^{2 \pi} \int_{\pi / 6}^{\pi / 2} \int_{0}^{4} \rho^{2} \sin (\phi) d \rho d \phi d \theta \\
& \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{2}^{5} \rho^{2} \sin (\phi) d \rho d \phi d \theta
\end{aligned}
$$

